Raghavan Narasimhan
Tata Institute of Fundamental Research, Bombay
Forschungsinstitut für Mathematik, ETH, Zürich

Introduction to the Theory of Analytic Spaces

1966

Springer-Verlag · Berlin · Heidelberg · New York
CHAPTER III. LOCAL PROPERTIES OF ANALYTIC SETS

In this chapter, we will be concerned with the local description of analytic sets, both over \(\mathbb{R} \) and over \(\mathbb{C} \). In the first section we shall deal with properties that are valid in either case, and in the second with those properties that are special to complex analytic sets. A more detailed analysis of real analytic sets will be undertaken in Chapter V. The results are mostly contained in Remmert - Stein [32], Cartan [10, 12], Hervé [19].

§ 1. Germs of analytic sets.

Let \(k \) be either \(\mathbb{R} \) or \(\mathbb{C} \), and let \(\Omega \) be an open set in \(k^n \). Analytic functions will mean holomorphic if \(k = \mathbb{C} \), real analytic if \(k = \mathbb{R} \). Let \(S \) be an analytic set in \(\Omega \) and let \(a \in \Omega \). We denote by \(S_a \) the germ of the set \(S \) at \(a \). We refer to \(S_a \) as an analytic germ. Let \(I = I(S_a) \) denote the set of all (germs of) analytic functions in \(\mathcal{O}_{n,a} \) which vanish on the germ \(S_a \) (this statement has an obvious meaning). Clearly \(I \) is an ideal in \(\mathcal{O}_{n,a} \).

We have, obviously, \(S_a \subseteq S_a' \) if and only if \(I(S_a) \supseteq I(S_a') \). We say that \(S_a \) is irreducible if whenever there are two analytic germs \(S_{1a}, S_{2a} \) with \(S_a = S_{1a} \cup S_{2a} \), one of the germs \(S_{1a} \) must be \(= S_a \).

The following lemma is obvious.

Lemma 1. \(S_a \) is irreducible if and only if \(I(S_a) \) is a prime ideal.

Since \(\mathcal{O}_{n,a} \) is noetherian, any increasing sequence of ideals in \(\mathcal{O}_{n,a} \) terminates. Hence any decreasing sequence of analytic germs \(S_{1a}, S_{2a}, \ldots \) terminates. We deduce easily from this the following
Proposition 1. Any analytic germ S_a can be written as a finite union $S_a = \bigcup_{\nu=1}^{k} S_{\nu a}$ of irreducible analytic germs $S_{\nu a}$ such that, for each ν, $S_{\nu a} \cup \bigcup_{\mu \neq \nu} S_{\mu a}$. Further, this decomposition is uniquely determined up to order.

Definition 1. The germs $S_{\nu a}$ introduced by this decomposition $S_a = \cup S_{\nu a}$ are called the irreducible components of S_a.

Let now I be an ideal in $\mathcal{O}_n = \mathcal{O}_{n,0}$; we suppose that $\{0\} \neq I \neq \mathcal{O}_n$. If x_1, \ldots, x_n are the coordinates of k^n, we shall denote by \mathcal{O}_p the subring of \mathcal{O}_n consisting of functions independent of x_{p+1}, \ldots, x_n. We have a natural injection $\mathcal{O}_p \to \mathcal{O}_n$. Let A denote the quotient ring \mathcal{O}_n/I. Then, we have a natural homomorphism $\eta : \mathcal{O}_p \to A$.

Proposition 2. After a linear change of coordinates in k^n, there is an integer p, $0 \leq p < n$, such that $\eta : \mathcal{O}_p \to A$ is injective and makes of A a finite \mathcal{O}_p-module.

Proof. Let $f \in I$, $f \neq 0$. We may make a linear transformation of k^n so as to ensure that $f(0,x_n) \neq 0$. This condition is invariant under linear transformations of k^{n-1}. By Chapter II, Theorem 2, (2), there is a unit u and a polynomial q_{n-1}

$p_n = x_n + \sum_{v=0}^{q_{n-1}} a_v(x_1, \ldots, x_{n-1})x_n^v$, \hspace{1cm} $a_v(0) = 0$, \hspace{1cm} with \hspace{1cm} $f = up_n$;

then $p_n \in I$. Now, either $I_{n-1} = I \cap \mathcal{O}_{n-1} = \{0\}$, in which case we take $p = n - 1$, or there is $f_{n-1} \in I_{n-1} \{0\}$ as above, we find, after a linear change of variables in k^{n-1}, that there is a polynomial

$p_{n-1} = x_{n-1} + \sum_{v=0}^{q_{n-1}} a'_v(x_1, \ldots, x_{n-2})x_{n-1}^v$, \hspace{1cm} $a'_v(0) = 0$, \hspace{1cm} $p_{n-1} \in I_{n-1}$.
Continuing this process, we find an integer \(p \) such that \(I_p = I \cap I_p \) = 0 and such that, for any \(r > p \), there is a distinguished polynomial.

\[
p_r = x_r + \sum_{v=0}^{q_{r-1}^{-1}} a_v^{(n-r)}(x_1, \ldots, x_{r-1})x_r^v, \quad a_v^{(n-r)}(0) = 0,
\]

with \(P_r \in I_r = I \cap I_r \).

We claim that this integer \(p \) satisfies our requirements. In fact, trivially \(I_p = \{0\} \) implies that \(\eta : \mathcal{O}_n \to A \) is injective. If \(f \in \mathcal{O}_n \), by Chapter II, Theorem 2, (i), we have

\[
f = \sum_{v=0}^{q_{n-1}^{-1}} f_1, v(x_1, \ldots, x_{n-1})x_n^v (\text{mod } P_n),
\]

\[
f_1, v = \sum_{\mu=0}^{q_{n-1}^{-1}} f_2, \mu(x_1, \ldots, x_{n-2})x_n^{\mu} (\text{mod } P_{n-1}),
\]

and so on, so that

\[
f = \sum_{\alpha_j < q_j} f(\alpha_1, \ldots, \alpha_n)x_1^{\alpha_1 + 1} \ldots x_n^{\alpha_n} (\text{mod } P_{p+1}, \ldots, P_n),
\]

so that the images of the monomials \(x_1^{\alpha_1 + 1} \ldots x_n^{\alpha_n}, \alpha_j < q_j \) generate \(A \) over \(\mathcal{O}_p \).

In what follows, we shall identify elements of \(\mathcal{O}_n \) with their images in \(A = \mathcal{O}_n/I \) when no confusion is likely.

Corollary. If, in addition, \(I \) is a prime ideal, \(K \) is the quotient field of \(\mathcal{O}_p \), \(L \) that of \(A = \mathcal{O}_n/I \), then \(L = K(x_{p+1}, \ldots, x_n) \).

Remark. The necessary and sufficient condition that the coordinates satisfy the assertion of Proposition 2 is that \(I_p = \{0\} \) and, for \(r > p \), there exists a distinguished polynomial \(Q_r(x_r; x_1, \ldots, x_{r-1}) \in \mathcal{O}_{r-1}[x_r]nI \).
We now state two algebraic theorems that we shall use.

I. (Theorem of primitive element). If K is a field of characteristic zero and $L = K(u_1, \ldots, u_r)$ a finite algebraic extension of K, then, for any infinite subset $S \subseteq K$, there exist elements $c_1, \ldots, c_r \in S$ such that

$$L = K(c)$$

where $c = \sum_{i=1}^{r} c_i u_i$.

II. Let K, L be as above, and in addition, suppose that K is the quotient field of a factorial ring A, that B is the integral closure of A in L, and that $\zeta \in B$ is such that $L = K(\zeta)$. Let P be the minimal polynomial of ζ over K. (Then $P \in A[X]$ since A is factorial.) If P' denotes the derivative of P, then for any $\alpha \in B$, there is $Q \in A[X]$ of degree $< $ degree P such that $\alpha P'(\zeta) = Q(\zeta)$ (note that $P'(\zeta) \neq 0$).

Now, by the theorem of primitive element, there exist complex numbers λ_j such that $y_{p+1} = \sum_{j=1}^{n} \lambda_j x_j$ is linearly independent of x_1, \ldots, x_p and $L = K(y_{p+1})$. Further, for any $f \in \mathfrak{O}_n$, since A is a finite A-module, there exists a polynomial $Q_f(X) = X^m + \sum_{v=0}^{m-1} b_v(x_1, \ldots, x_p)X^v \in A[X]$ with $Q_f(f) = 0$. If we choose the polynomial Q_f to have minimal degree we claim that when $f(0) = 0$, Q_f is a distinguished polynomial. In fact if not all $b_v(0) = 0$, then $X^m + \sum_{v=0}^{m-1} b_v(0)X^v$ has, at $X = 0$, a zero of order 1. We'll choose $Q(0)$ as the distinguished polynomial, and $Q(X) = X^{l-1} + \sum_{v=0}^{l-1} c_v(x_1, \ldots, x_p)X^v$ is a unit.
a distinguished polynomial of degree 1. But then \(Q(f) = 0 \), and \(Q_f \) would not have minimal degree. Thus we obtain (since \(\mathcal{O}_p \) is factorial)

Proposition 3. Given a prime ideal \(I : \mathcal{O}_n', \{0\} \neq I \neq \mathcal{O}_n' \), there exists, after a linear change of coordinates in \(k^n \), an integer \(p, 0 \leq p < n \) such that

\[
\eta : \mathcal{O}_p \to A = \mathcal{O}_n'/I
\]

is an injection which makes \(A \) a finite \(\mathcal{O}_p \)-module. Further, if \(K \) is the quotient field of \(\mathcal{O}_p \), \(L \) that of \(A \), we have \(L = K(x_{p+1}) \), and for any \(r > p \), the minimal polynomial \(P_r \) of \(x_r \) over \(K \) is in \(\mathcal{O}_p[X] \), and is distinguished, so that there is a distinguished polynomial

\[
P_r(x_r; x') = x_r^q + \sum_{v=0}^{q_{r-1}} a_v^{(r)}(x') x_r^v, \quad x' = (x_1', \ldots, x_p'),
\]

\(a_v^{(r)}(0') = 0 \), with \(P_r(x_r, x') \in I \).

It follows that if \(p = 0 \), and if \(I = I(S_0) \), then \(S_0 \) is the germ defined by \(S = \{0\} \).

In what follows, we shall suppose the prime ideal \(I \) given, and the coordinates chosen so that Proposition 3 applies. We shall use the notation of Proposition 3.

Let \(\delta \) denote the discriminant of the polynomial \(P_{p+1} \) (so that \(\delta \) is the resultant of \(P_{p+1} \) and \(\frac{\partial P_{p+1}}{\partial x_{p+1}} \)). Then \(\delta \in \mathcal{O}_p \), further since \(P_{p+1} \) is the minimal polynomial of \(x_{p+1} \) over \(\mathcal{O}_p \), \(\delta \neq 0 \) in \(\mathcal{O}_p \); since \(I_p = \{0\} \), \(\delta \notin I \).

By the algebraic theorem II stated above, if \(q \) is the degree of \(P_{p+1} \), we have the following

Lemma 2. For any \(f \in \mathcal{O}_n' \), there is a polynomial \(R_f \) of degree \(< q - 1 \) in \(\mathcal{O}_p[X] \) such that
\[\delta f - R_f(X_{p+1}) \in I. \]

In particular, there are polynomials \(Q_r \) of degree \(\leq q - 1 \) in \(\mathcal{O}_p[X] \) such that, for \(r > p, \)
\[\delta x_r = Q_r(x_{p+1}) \in I. \]

Lemma 3. For any \(f \in \mathcal{O}_n \), there exists \(g \in \mathcal{O}_n - I \) and \(h \in \mathcal{O}_p \) such that \(gf - h \in I. \)

Proof. Since \(A \) is a finite \(\mathcal{O}_p \)-module, we have a relationship
\[f^m + \sum_{v=0}^{m-1} a_v(x_1', \ldots, x_p') f^v \in I; \]
we may suppose, since \(I \) is prime, that \(a_0(x') \neq 0. \) We have then only to set \(h = -a_0, \) \(g = f^{m-1} + \sum_{v=1}^{m-1} a_v(x') f^{v-1}. \)

Definition 2. Let \(S \) be an analytic set in an open set \(\Omega \) in \(k^n. \) A point \(a \in S \) is called a regular point of \(S \) of dimension \(m \) if there is a neighbourhood \(U \) of \(a, U \subset \Omega, \) such that \(S \cap U \) is an analytic submanifold of dimension \(m \) of \(U. \) A point \(a \in S \) is called singular if it is not regular.

A point \(a \in S \) is regular of dimension \(m \) if and only if there exist functions \(f_{p+1}, \ldots, f_n \in \mathcal{O}_{n,a} \) such that, in a neighbourhood of \(a, S = \{ x \mid f_i(x) = 0, i > p \} \) and \((df_{p+1})_a, \ldots, (df_n)_a \) are linearly independent.

Let \(S \) be an analytic set in an open set \(\Omega \subset k^n, 0 \in S. \) We suppose that \(S_0 \) is irreducible, i.e. that \(I = I(S_0) \) is a prime ideal in \(\mathcal{O}_n = \mathcal{O}_n, 0. \) Choose coordinates in \(k^n \) so that Proposition 3 is satisfied. Then we have

Proposition 4. There is a fundamental system of neighbourhoods \(U = U' \times U'' , \quad U' \subset k^p, \quad U'' \subset k^{n-p} \) of \(0 \) such that if \(x : (S \cap U) \to U' \) denotes the restriction to \(S \cap U \) of the projection of \(U \) onto \(U', \)
then π is a proper map and every fibre $\pi^{-1}(x')$, $x' \in U'$, of π is a finite set.

Proof. Choose a neighbourhood V of 0 such that the polynomials $P_r(x_r, x')$ of Proposition 3 all have coefficients analytic on V and vanish on S_nV. Let $V = \{x \mid |x| < \varrho\}$. Since the P_r are distinguished, there is $\sigma > 0$, such that if $|x'| < \sigma$ and $P_r(x_r, x') = 0$, then $|x_r| < \varrho/2$. Clearly if $U' = \{x' \in k^n \mid |x'| < \sigma\}$, $U'' = \{x'' \in k^{n-p} \mid |x''| < \varrho\}$, and π is as above, then $
abla^{-1}(E) \subset \{x'' \mid |x''| < \varrho/2\}$, so that π is proper. Further, if $x \in \pi^{-1}(x')$, then $P_r(x_r, x') = 0$, and x_r can take at most finitely many different values.

Lemma 4. Let I be a prime ideal in \mathcal{O}_n, and S_ϱ the germ of analytic set at 0 defined as the set of common zeros of a finite system of generators of I. Let P_r, $r > p$, $\delta x_r - Q_r(x_{p+1})$ be as in Proposition 3 and Lemma 2. Then there exists a fundamental system of neighbourhoods $U = U' \times U''$ of 0 such that these functions are analytic on U, S_ϱ is induced by an analytic set S in U, and such that the following hold.

(a) $S_n U \cap \{x \mid \delta(x') \neq 0\} = \{x \in U \mid \delta(x') \neq 0, P_{p+1}(x_{p+1}, x') = 0, \delta x_r - Q_r(x_{p+1}) = 0, r > p + 1\}$.

(b) If $x \in U'$, $x \in k^{n-p}$, and $P_{p+1}(x_{p+1}, x') = 0$, $\delta(x') \neq 0$, then $x \in U$.

Proof. Choose $V = V' \times V''$ such that all the functions considered are analytic on V; further, let f_1, \ldots, f_m be analytic functions on V with $S_n V = \{x \in V \mid f_i(x) = 0, i = 1, \ldots, m\}$ (f_i generators of I). As in the proof of Proposition 2, we find that there exist $f_{\alpha, i} \in \mathcal{O}_p$, $\alpha = (\alpha_{p+1}, \ldots, \alpha_n), \alpha_j < q_j$,
with

$$f_i = \sum_{\alpha_j < q_j} f_{a, i}(x') x_{p+1} \cdots x_n \pmod{p+1, \ldots, p_n}$$

and hence, if $N = q_{p+2} \cdots q_n$ (substitute $\delta x_r = Q_r$)

$$\delta^N f_i = R_i(x_{p+1}) \pmod{p+1, \ldots, p_n, \delta x_{p+2} - Q_{p+2}, \ldots, \delta x_n - Q_n},$$

where R_i is an element in $\mathcal{O}_p[X]$. Again, since p_{p+1} is monic, we may make a polynomial division of R_i by p_{p+1} and obtain

$$\delta^N f_i = R_i(x_{p+1}) \pmod{p_{p+1}, \ldots, p_n, \delta x_{p+2} - Q_{p+2}, \ldots, \delta x_n - Q_n},$$

where R_i is a polynomial of degree $< q - 1$ ($q = \deg p_{p+1}$). Now $f_i \in I$; hence $R_i(x_{p+1}) \in I$. Since p_{p+1} is the minimal polynomial of x_{p+1} over \mathcal{O}_p, and $\deg R_i < \deg p_{p+1}$, this implies that $R_i = 0$, so that

$$\delta^N f_i = 0 \pmod{p_{p+1}, \ldots, p_n, \delta x_{p+2} - Q_{p+2}, \ldots}.$$

We now proceed as follows. Clearly, for each $r > p + 1$, we have, on $V' \times k^{n-p}$

$$\delta^q p_r = A'_r(x_{p+1}) \pmod{\delta x_r - Q_r},$$

where $A'_r \in \mathcal{O}_p[X]$. Making a polynomial division of A'_r by p_{p+1}, we obtain

$$\delta^q p_r = A_r(x_{p+1}) \pmod{p_{p+1}, \delta x_r - Q_r} \text{ on } V' \times k^{n-p},$$

where $A_r \in \mathcal{O}_p[X]$ and has degree $< \deg p_{p+1}$. Again $A_r(x_{p+1}) \in I$ and so is zero near 0, hence 0 on $V' \times k^{n-p}$.
Hence

\[(2) \quad \delta^q_{p+1, \delta x - Q} = 0 \pmod{p+1, \delta x - Q} \] on \(V' \times k^{n-p} \). This implies that if \(\delta(x') \neq 0 \), \(P_{p+1}(x_{p+1}, x') = \delta x - Q = 0 \), then \(P_{p+1}(x_{p+1}, x') = 0 \). Since \(P_{p+1} \) is distinguished, this implies that if \(V' \) is small, then any solution \(x \in V' \times k^{n-p} \) of \(P_{p+1}(x_{p+1}, x') = 0 = \delta x - Q \), \(r > p + 1 \), lies in a preassigned neighbourhood \(V' \times V'' \) of 0. This proves (b).

Again, (1) and (2) imply that, for a fixed integer \(M > 0 \),

\[(3) \quad \delta^M f = 0 \pmod{p+1, \delta x_{p+2} - Q_{p+2}, \ldots, \delta x_n - Q_n} \].

If we now choose \(U \subset V \), \(U = U' \times U'' \) such that (b) holds, and all the above congruences are represented by linear relations with coefficients analytic on \(U \), then

\[S \cap U \cap \{ x \mid \delta(x') \neq 0 \} = \{ x \in U \mid \delta(x') \neq 0, f_1(x) = \ldots = f_m(x) = 0 \}, \]

and, by (3), this is

\[= \{ x \in U \mid \delta(x') \neq 0, P_{p+1}(x_{p+1}, x') = 0 = \delta x - Q_{p+1}(x_{p+1}), r > p + 1 \}. \]

This proves Lemma 4.

We remark that in Proposition 4 and Lemma 4, given any \(V' \subset k^{n-p} \) (which is a neighbourhood of 0), then we can find a neighbourhood \(V' \) of 0 in \(k^p \) such that for any open set \(U' \subset V', 0 \in U' \), the assertions in Proposition 4 and Lemma 4 are true.

Proposition 5. Let \(U \) be a neighbourhood of 0 such that Lemma 4 is true relative to the ideal \(I = I(S_0) \) where \(S_0 \) is irreducible. Then any point \(x \in S \cap U \) with \(\delta(x') \neq 0 \) is a regular point of \(S \) of dimension \(p \), and the projection \(\pi \) has a jacobian of rank \(p \) at \(x \).
Proof. Since $\delta(x') \neq 0$ and $P_{p+1}(x) = 0$, we conclude that, at the point x, $\frac{\partial P_{p+1}}{\partial x} \neq 0$. Hence, S is defined near x by the system of equations

$$P_{p+1}(x_{p+1}, x') = 0, x_r = \frac{Q_r(x_{p+1})}{\delta(x')}, r > p + 1,$$

which has the property that $d_{p+1} ... d\left(x_r - \frac{Q_r}{\delta(x')}\right)$ are k-independent at x. This proves Proposition 5.

Remark further that if X, Y are analytic manifolds countable at ∞ and $f : X \to Y$ is an analytic map such that $f^{-1}(y)$ is discrete for every $y \in f(X)$, then $\dim X + \dim Y$ (apply the rank theorem to a point where the differential of f has maximal rank). Combining this with Proposition 5 we obtain

Proposition 6. The integer p of Proposition 2 and 3 relative to $I = I(S_a)$, S_a being irreducible, is the largest integer m such that (S_a) is induced by an analytic set S), every neighbourhood of 0 contains points at which S is regular of dimension m.

This characterisation of the integer p is clearly invariant under analytic automorphism of a neighbourhood of 0 in k^n.

Definition 3. The dimension of an irreducible analytic germ S_a at $a \in k^n$ is the integer p of Proposition 2. The dimension of an arbitrary analytic germ S_a is the maximum dimension of of the irreducible components $S_{v,a}$ of S_a. The dimension of an analytic set S in an open set Ω in k^n is $\max_{a \in S_a} \dim_{S_a}$, where S_a is the germ at a defined by S.
Theorem 1. Let S be an analytic set in an open set Ω in k^n. Let $a \in S$ and $\dim S_a = p$. Then any neighbourhood of a contains points at which S is regular of dimension p. In particular, the set of regular points of S is dense in S.

Proof. Let T_a be an irreducible component of S_a of dimension p. Let T'_a be the union of the other irreducible components of S_a. Let $T''_a = T'_a \cap T'_a$ and T, T'' be analytic sets in an open set U containing a inducing the germs T_a, T''_a at a; then $S \cap U = T \cap T''$. Since a regular point of T of dimension p which does not lie on T'' is clearly a regular point of S of dimension p, it suffices to prove that U contains a regular point of T of dimension p not on T''. Let U be so chosen that Propositions 3, 4, 5 apply to T_a. Then, there is $f \in \mathcal{O}_n$, $f = 0$ on T''_a, $f \notin I = I(T_a)$ (since $T''_a \cap T'_a$). Let δ have the significance of Proposition 4 (relative to T_a). Then $\delta \notin I$. Since I is prime, $f \notin \delta I$.

Hence, arbitrarily near a, there are points $x \in T$ with $f(x) \neq 0$. Theorem 1 follows from Proposition 5.

Proposition 7. If S_a is an irreducible germ of dimension p and $S_a \supset S'_a$, where S'_a is any analytic germ at a, then $\dim S'_a < \dim S_a$.

Proof. Clearly, we may suppose that S'_a is irreducible. We choose the coordinates x_1, \ldots, x_n in k^n so that if $I = I(S'_a)$, $I' = I(S'_a)$ (so that $I \subset I'$), then we have $I_p = \{0\}$. There exists a distinguished pseudopolynomial $P_r(x_r; x') \in I$, $r > p$. If we show that, after a linear change of variables in $k^p(x_1, \ldots, x_p)$, there is a distinguished polynomial $P_p(x_p; x_1, \ldots, x_{p-1}) \in I'$, the result follows from the remark after Proposition 2. Now, by the preparation theorem, it suffices to prove that there exists $h \in \mathcal{O}_n \setminus I' = I''$, $h \neq 0$. Let $g \in \mathcal{O}_n$, $g \notin I$, $g \in I'$. By Lemma 3, there is $g_1 \notin \mathcal{O}_n - I$
such that $g_g \equiv h \mod I$, where $h \in \mathcal{O}_p$. But then clearly, since $g \in I'$, $h \in I'$, and, since I is prime, $g_g \not\equiv I$, so that $h \not\equiv I$, and in particular $h \neq 0$.

§ 2. Complex analytic sets.

In this section we shall deal only with complex analytic sets, so that $k = \mathbb{C}$.

Let I be a prime ideal in $\mathcal{O}_{n,a} = \mathcal{O}_n$, and suppose that the coordinates (x_1, \ldots, x_n) are so chosen that Proposition 3, 4 and Lemma 4 are valid. Let $\pi : S_n U \to U'$ be the projection defined in Proposition 4.

For any ideal $I \subseteq \mathcal{O}_{n,a}$ we denote by $S(I)$ the germ at a of analytic set defined as the set of common zeros of a finite system of generators of I. Clearly, $S(I)$ is independent of the system of generators chosen.

Proposition 8. We have $\pi(S_n U) = U'$.

Proof. Since π is proper, its image is closed in U'.

Hence it suffices to show that $\pi(S_n U)$ is dense in U'.

For any $x' \in U'$, $\delta(x') \neq 0$, the polynomial $p_{p+1} (x_{p+1}, x')$ has a complex zero x_{p+1}. Let $x = \left(x', x_{p+1}, \frac{q_{p+2}(x_{p+1})}{\delta(x')}, \ldots, \frac{q_n(x_{p+1})}{\delta(x')} \right)$.

By Lemma 4, $x \in S_n U$, and clearly $\pi(x) = x'$. Hence $\pi(S_n U)$ contains the dense set $\{ x' \in U' | \delta(x') \neq 0 \}$.

Remarks. 1. Note that, by the remark following Proposition 3, this implies that, if the coordinates are so chosen that Proposition 2 is valid, then there is a fundamental system of neighbourhoods $\{ U_v \}$ of 0 such that $\pi_p(S_n U_v)$ is a neighbourhood of 0 in \mathbb{C}^p, π_p being the projection of \mathbb{C}^n onto \mathbb{C}^p.

2. Actually, the map $\pi : S_n \{ x \in U | \delta(x') \neq 0 \} \to U' - \{ x' \in U' | \delta(x') \neq 0 \}$ is a covering map.
Lemma 5. Let \(f \in \mathcal{O}_n \). If, for sufficiently small \(U \) as above, for any \(x' \in U' \), \(\delta(x') \neq 0 \), there is \(x \in \mathcal{S}_n U \) such that \(\pi(x) = x' \) and \(f(x) = 0 \), then \(f \in \mathcal{I} \).

Proof. If \(f \notin \mathcal{I} \), there is \(g \in \mathcal{I} \) such that \(gf = h(\text{mod} \ I) \) where \(h \in \mathcal{O} \). Then \(h \in \mathcal{I} \), and for any sufficiently small \(x' \), \(\delta(x') \neq 0 \), \(h(x') = f(x) g(x) = 0 \) (if \(x \in \mathcal{S}_n U \), \(\pi(x) = x' \)), so that \(h = 0 \) and so \(h \notin \mathcal{I} \), a contradiction.

Theorem 2. (Hilbert's Nullstellensatz). Let \(\mathfrak{a} \) be any ideal of \(\mathcal{O}_n \) and \(\mathcal{S}_O = S(\mathfrak{a}) \) the germ of analytic set defined as the set of common zeros of a finite system of generators of \(\mathfrak{a} \). Then \(I(\mathcal{S}_O) = \mathrm{rad}\mathfrak{a} = \{ f \in \mathcal{O}_n | f^m \in \mathfrak{a} \text{ for some integer } m > 0 \} \).

Proof. We first remark that, if \(\mathfrak{a} \) is prime, \(I(\mathcal{S}_O) = \mathfrak{a} \). This is a trivial consequence of Lemma 5. Hence, if \(\mathfrak{a} \) is primary (i.e. \(\mathrm{rad}\mathfrak{a} \) is prime), we deduce, since \(S(\mathfrak{a}) = S(\mathrm{rad}\mathfrak{a}) \), that \(I(\mathcal{S}_O) = \mathrm{rad}\mathfrak{a} \). If \(\mathfrak{a} \) is arbitrary, \(\neq \{0\} \), since \(\mathcal{O}_n \) is noetherian, we obtain by the Noether decomposition theorem,

\[
\mathfrak{a} = \bigwedge_{v=1}^{k} \mathfrak{q}_v, \quad \mathfrak{q}_v \text{ being primary.}
\]

Clearly then

\[
\mathcal{S}(\mathfrak{a}) = \bigcup_{v=1}^{k} \mathcal{S}(\mathfrak{q}_v),
\]

so that

\[
I(\mathcal{S}(\mathfrak{a})) = \bigcap_{v=1}^{k} I(\mathcal{S}(\mathfrak{q}_v)) = \bigcap_{v=1}^{k} \mathrm{rad}\mathfrak{q}_v = \mathrm{rad}\mathfrak{a}.
\]

We now give a very important application of the results obtained above. We begin with a definition.

Definition 4. Let \(S \) be an analytic set in an open set \(\Omega \) in \(\mathbb{C}^n \). A function \(f \) on \(S \) is said to be holomorphic at \(a \in S \) if there is a neighbourhood \(U \) of \(a \) in \(\Omega \) and a holomorphic function \(F \) in \(U \) with \(F|_{U \cap S} = f|_{U \cap S} \).
We may define germs of holomorphic functions in the obvious way. If \(a \in S \), let \(\mathcal{O}_{S, a} \) denote the ring of germs of holomorphic functions at \(a \) on \(S \). Clearly, we have

\[
\mathcal{O}_{n,a}/I(S_a) \cong \mathcal{O}_{S, a}.
\]

Hence \(\mathcal{O}_{S, a} \) is an analytic ring over \(\mathbb{C} \).

Definition 5. A map \(f : S_1 \to S_2 \) (\(S_1 \) analytic set in an open set in \(\mathbb{C}^{n_1} \)) is called holomorphic if the map \(j \circ f \), where \(j : S_2 \to \mathbb{C}^{n_2} \) is the natural injection, has the form \(j \circ f = (f_1, \ldots, f_{n_2}) \) where the \(f_v \) are holomorphic on \(S_1 \).

Clearly, a holomorphic map \(f : S_1 \to S_2 \) induces, for \(a \in S_1 \), an algebra homomorphism

\[
f^* : \mathcal{O}_{S_2, f(a)} \to \mathcal{O}_{S_1, a}
\]

viz, \(f^*(\varphi) = \varphi \circ f \).

Theorem 3. Let \(f : S_1 \to S_2 \) be holomorphic. Then the homomorphism

\[
f^* : \mathcal{O}_{S_2, f(a)} \to \mathcal{O}_{S_1, a}
\]

is finite (see Chapter II) if and only if \(a \) is an isolated point of the fibre \(f^{-1} f(a) \).

Proof. Let \(S_1 \cap \mathbb{C}^n(x_1, \ldots, x_n), \ S_2 \cap \mathbb{C}^m(y_1, \ldots, y_m) \).

We may suppose that \(a = 0, \ f(a) = 0 \). We set

\[
R_1 = \mathcal{O}_{S_1, 0}, \quad R_2 = \mathcal{O}_{S_2, f(0)}.
\]

Suppose that

\[
f^* : R_2 \to R_1
\]

is finite. Then every element of \(R_1 \) is integral over \(R_2 \).
Hence, if $\varphi \in \mathcal{O}_{S_1,0}$, there exist holomorphic germs $a_1, \ldots, a_r \in \mathcal{O}_{S_2,0}$ such that

$$\varphi^r(x) + \sum_{v=1}^{r} a_v(f(x))\varphi^{r-v}(x) = 0.$$

In particular, we have, in some neighbourhood of 0 on S_1,

$$x_k^r + \sum_{v=1}^{r} a_v^{(k)}(f(x))x_k^{r-v} = 0, \quad k = 1, \ldots, n, a_v^{(k)} \in \mathcal{O}_{S_2,0}.$$

Hence, if $f(x) = 0$, and x is near 0 on S_1, x_k satisfies a polynomial relation and so can be at most one of finitely many complex numbers. Hence 0 is isolated in $f^{-1}f(0)$.

Suppose conversely that 0 is an isolated point of $f^{-1}f(0)$. This means precisely that if \mathfrak{a} is the ideal of $\mathcal{O}_{n,0}$ generated by $(f_1, \ldots, f_m, I(S_0))$, then $S(\mathfrak{a}) = \{0\}$. (For notation $S(\mathfrak{a})$, see Theorem 2). Hence, by the Nullstellensatz, for any $k, 1 \leq k \leq n$, there is an integer r such that

$$x_k^r = \sum_{v=1}^{m} a_v(x)f_v(x) \pmod {I(S_0)}, \quad a_v \in \mathcal{O}_{n,0}.$$

This implies clearly that there is an integer $q > 0$ such that $[\mathbb{R}_1]^{q} f^*([\mathbb{R}_2]) \cdot R_1$ (for notation see Chapter II).

This implies that $f^*: R_2 \rightarrow R_1$ is quasi-finite. By Theorem 1, Chapter II, f^* is finite, q.e.d.

Corollary 1. The necessary and sufficient condition that a system of coordinates (x_1, \ldots, x_n) of \mathbb{C}^n satisfy the assertion of Proposition 2 relative to an ideal $I \mathcal{O}_n$ is that 0 is an isolated point of the set

$\{x_1 = \ldots = x_p = 0\} \cap S(I)$ and $I \mathcal{O}_p = \{0\}$.

Corollary 2. If X, Y are analytic sets in open sets in \mathbb{C}^n, \mathbb{C}^m respectively, $f : X \to Y$ a holomorphic map for which $a \in X$ is an isolated point of $f^{-1}f(a)$, then there is a neighbourhood U of a such that any $b \in U$ is an isolated point of $f^{-1}f(b)$.

Proof. Let X be an analytic set in an open set Ω in \mathbb{C}^n and suppose that $a = 0$. By Theorem 3, there exist $\alpha_{\mu, i} \in \mathbb{O}, b, b \in f(0)$, such that

$$x_i^{p_i} - \sum_{\mu=1}^P \alpha_{\mu, i} f(x) x_i^{p_i-\mu} = 0 \text{ in } \Omega_{X, 0},$$

here x_1, \ldots, x_n are the coordinates in \mathbb{C}^n. There is a neighbourhood U of 0 and an open set $V \subseteq Y, b \in V, b \subseteq f(U)$, such that $a_{\mu, i}$ are holomorphic in $V, f(U) \cap V$, and the above equations hold on U. Then, given $f(x) \in V$, each x_i can have only finitely many values, which proves our assertion.

Corollary 3. If S is an analytic set in an open set $\Omega \subseteq \mathbb{C}^n$ of dimension p at every point and the restriction to S of the projection π of \mathbb{C}^n onto \mathbb{C}^p is a proper map with finite fibres into $\Omega' = \pi(\Omega)$, then $\pi|S$ is an open map.

Proof. Let $0 \in S$ and U a neighbourhood of 0; we have to show that $\pi(U \cap S)$ is a neighbourhood of $0 = \pi(0) \in \mathbb{C}^p$. This is an immediate consequence of Corollary 1 above and the Remark 1 after Proposition 8.

Corollary 4. If S is an analytic set in an open set Ω in \mathbb{C}^n and $0 \in S$, then $\dim S_0$ is the smallest integer k such that there exists a subspace H of \mathbb{C}^n of dimension $n - k$ such that 0 is an isolated point of $H \cap S$.

This follows easily from Corollary 1 above and the definition of $\dim S_0$.

Corollary 5. If X is an analytic set in an open set in \mathbb{C}^n and $f : X \to \mathbb{C}^k$ is a holomorphic map, then any point $a \in X$
has a neighbourhood U in X such that, for $x \in U$

$$\dim_X f^{-1}f(x) \leq \dim_a f^{-1}f(a).$$

Proof. If $p = \dim_a f^{-1}f(a)$, then, if the coordinates at a are suitably chosen, a is an isolated point of the set

$$f^{-1}f(a) \cap \left\{ z \in \mathbb{C}^n \mid z_1 = \ldots = z_p = 0 \right\}.$$

Let $g : X \to \mathbb{C}^{k+p}$ be the map $g(z) = \left(f(z), z_1, \ldots, z_p\right)$. Then a is an isolated point of $g^{-1}g(a)$; by Corollary 2 above, there is an open set U' in \mathbb{C}^n containing a such that, for $z \in U \cap X$, x is an isolated point of $g^{-1}g(x)$. This means precisely that x is an isolated point of

$$f^{-1}f(x) \cap \left\{ z \in \mathbb{C}^n \mid z_1 = \ldots = z_p = 0 \right\}.$$

By Corollary 4 above, $\dim_X f^{-1}f(x) \leq p$.

We now continue our study of complex analytic sets.

Theorem 4. Let Ω be an open set \mathbb{C}^n and π, the restriction to Ω of the projection of \mathbb{C}^n onto \mathbb{C}^p (first p variables). Let $\Omega' = \pi(\Omega)$ and A' be a thin subset of Ω'. Let X be an analytic set in $\Omega - \pi^{-1}(A')$ and suppose that $\pi|X$ is a finite covering of $\Omega' - A'$ (i.e. $\pi|X$ is proper and locally biholomorphic) and that $\pi|X$ is a proper map into Ω'. Then \overline{X} is an analytic set in Ω of dimension p at each of its points.

Proof. Let $A = \pi^{-1}(A')$. We may suppose that Ω (and hence Ω') is connected. Hence $\Omega' - A'$ is connected (Chapter I, Proposition 11) and hence there is an integer k such that for any $x' \in \Omega' - A'$, there are exactly k points $x^{(1)}, \ldots, x^{(k)} \in X$ with $\pi(x^{(j)}) = x'$.

Let f be any holomorphic function on Ω. We define holomorphic functions a_1, f, \ldots, a_k, f on Ω' as follows.
For \(x' \in \Omega' - A' \), let \(a_{l,f} \) be the \(l \)-th elementary symmetric function

\[
a_{l,f}(x') = (-1)^l \sum_{1 \leq j_1 < \ldots < j_l \leq k} f(x^{(j_1)}) \ldots f(x^{(j_l)}),
\]

where \(x^{(1)}, \ldots, x^{(k)} \) are the points of \(X \) with \(\pi(x^{(j)}) = x' \).

Clearly \(a_{1,f} \) is holomorphic in \(\Omega' - A' \), and further, since \(\pi : \overline{X} \to \Omega' \) is proper, for any compact set \(K' \subset \Omega' \), \(a_{1,f} \) is bounded on \(K' - A' \), and hence (Chapter I, Proposition 10) can be extended to a holomorphic function on \(\Omega' \). Let \(P_f \) be the holomorphic function on \(\Omega \) defined by

\[
P_f(x) = f^k(x) + \sum_{l=1}^k a_{l,f}(x') f^{k-l}(x), \quad \pi(x) = x'.
\]

By construction, \(P_f(x) = 0 \) if \(x \in X \), and hence \(P_f(x) = 0 \) if \(x \in \overline{X} \). We claim that

(4) \(\overline{X} = \{ x' \in \overline{\Omega} | P_f(x') = 0 \text{ for any holomorphic } f \text{ on } \Omega \} \).

Let \(X' \) be the set of common zeros of the \(P_{f'} \), let \(x' \in \Omega' \), and set \(E' = \{ x' \in X' | \pi(x) = x' \} \), \(\overline{E} = \{ x \in \overline{X} | \pi(x) = x' \} \). Then \(\overline{E} \subset E' \), and to prove (4), it suffices to prove that \(\overline{E} = E' \).

For this, it suffices to prove that \(f(\overline{E}) = f(E') \) for any holomorphic \(f \) on \(\Omega \). Let \(\alpha \in f(E') \); because of the continuity of the roots of a polynomial, there is a sequence \(x'_v \) of points, \(x'_v \to x' \), \(x'_v \in A' \), such that there is a zero \(\alpha_v \) of the polynomial \(\zeta^k + \sum_{l=1}^k a_{l,f}(x'_v) \zeta^{k-l} \) such that the sequence \(\alpha_v \to \alpha \); but since \(x'_v \in A' \), there is \(x_v \in X \), \(\pi(x_v) = x'_v \), with \(\alpha_v = f(x_v) \). Further, since \(\pi : \overline{X} \to \Omega' \) is proper, we can find a subsequence \(\{ x_{v_k} \} \) such that \(x_{v_k} \to x \in \overline{X} \); clearly then \(x \notin E \) and \(f(x) = \lim f(x_{v_k}) = \alpha \).

Hence \(\alpha \in f(\overline{E}) \), and (4) is proved. Because of Corollary 2 to Theorem 5, Chapter II, \(\overline{X} \) is analytic in \(\Omega \). It is clear, since \(\pi : X \to \Omega' - A' \) is locally biholomorphic, that
X is regular of dimension p at every point of X. Since X is dense in X, Proposition 5 implies that X has dimension p at every point.

Proposition 9. Let S be an analytic set in Ω such that S_0 is irreducible. Let U be a neighbourhood of 0 as in Proposition 4 and Lemma 4. Then the set $X = \{x \in S|\delta(x') \neq 0\}$ is dense in some neighbourhood of 0 on S.

Proof. We have already remarked that the projection $\pi: X \to U' = \{x' \in U'|\delta(x') \neq 0\}$ is a covering. Further $\pi: S \to U'$ is proper, hence so is $\pi: X \to U'$. Hence, by Theorem 4, X is an analytic set of dimension p at 0. But since $X \subseteq S$, Proposition 7 implies that there is a neighbourhood V of 0 with $X \cap V = S \cap V$.

It is also possible to avoid Proposition 7 and use directly the argument used in Theorem 4. This method leads, in fact, to a somewhat stronger form of Proposition 9. Of course, Proposition 9 is stronger than Propositions 5 and 6.

If $f \in O_{\Omega,0}$, $f \in I(S_0)$, then there is $g \in I(S_0)$, $gf \equiv h \pmod{I(S_0)}$ where $h \in O_p$. Replacing X in the above proof by the set $\{x \in S|h(x')\delta(x') \neq 0\}$, we deduce

Proposition 9'. If S is as in Proposition 9 and $f \in I(S_0)$, then the set of points $\{x \in S|f(x) = 0\}$ is dense in some neighbourhood of 0 in S.

It is trivial matter to extend Proposition 9' to sets S for which S_0 is not necessarily irreducible (with the obvious conditions on f).

Definition 6. Let S be an analytic set in an open set Ω in C^n. A holomorphic function f on Ω is called a universal denominator for S at a point $a \in S$ if a has
a neighbourhood U in Ω such that the following holds: if h is a holomorphic function on the set S' of points of $S \cap U$ at which S is regular, and if h is bounded on S', then there is a neighbourhood V of a such that fh is the restriction to $S' \cap V$ of a holomorphic function on V.

Theorem 5. Let S be an analytic set in Ω, and suppose that S has dimension p at each point. Let π denote the projection of \mathbb{C}^n onto \mathbb{C}^p (first p variables), and let $\Omega' = \pi(\Omega)$. Suppose that $\pi|S$ is a proper mapping into Ω' with finite fibres (i.e. $\pi^{-1}(x') \cap S$ is finite for any $x' \in \Omega'$). Then, given a point $a \in S$ which is regular on S at which $x_1 - a_1, \ldots, x_p - a_p$ form a system of local coordinates, there exists a linear function l on \mathbb{C}^n and holomorphic functions $\alpha_1, \ldots, \alpha_k$ on Ω' such that, if we set

$$P(t, x') = t^k + \sum_{\nu=1}^{k} \alpha_{\nu}(x') t^{k-\nu},$$

the following conditions are satisfied.

(a) $P(l(x), \pi(x)) \equiv 0$ on S.

(b) $\frac{\partial P}{\partial t}(l(a), \pi(a)) \neq 0$, $P'(x) = \frac{\partial P}{\partial t}(l(x), \pi(x))$ is a universal denominator for S at every one of its points.

(c) If h is holomorphic and bounded on the set S' of regular points of S there exist holomorphic functions $\beta_0, \ldots, \beta_{k-1}$ on Ω' such that

$$P'(x)h(x) = \sum_{\nu=0}^{k-1} \beta_{\nu}(\pi(x))(l(x))^\nu$$

on S', and there is a constant M (independent of h) such that

(e) $\|\beta_{\nu}\|_{\Omega'} \leq M \|h\|_{S'}$.

Proof. We begin by proving the following. There exists a thin subset \(A' \) of \(\Omega' \) such that if \(A = S \cap \pi^{-1}(A') \) then \(\pi : S - A \rightarrow \Omega' - A' \) is a (finite) covering. Note that, by Corollary 3 to Theorem 3, \(A \) is nowhere dense in \(S \).

Let \(B \) be the union of the set of singular points of \(S \) with the set of points of \(S' \) where the jacobian matrix of the map \(\pi : S' \rightarrow \Omega' \) is not invertible. (Since \(\pi : S' \rightarrow \Omega' \) has finite fibres, this is a nowhere dense analytic set in \(S' \).)

Clearly, \(B \) is closed, hence so is \(\pi(B) = A' \). We claim that \(A' \) is thin. For this, it is clearly sufficient to prove the following: if \(b' \in \Omega' \) and \(b \in S \), \(\pi(b) = b' \), then, there is a neighbourhood \(U \) of \(b \) and a thin set \(E' \) in a neighbourhood \(U' \) of \(b' \) in \(\Omega' \) such that \(S \) is regular at any point of \(\bigcup_{b \in U} \pi^{-1}(E') \), and \(\pi|_{\bigcup_{b \in U} \pi^{-1}(E')} \) is of maximal rank. Let \(S_{v,b} \) be the irreducible components of \(S \) at \(b \). By Corollary 1 to Theorem 3 and Lemma 4, there is a holomorphic function \(g'_{v,b} \) near \(b' \) (which is a multiple of the discriminant \(\delta_v \) corresponding to \(\pi_{b} \)) such that \(g'_{v,b} \) is a local homeomorphism, it is a finite covering.

We now choose a linear function \(l \) on \(\mathbb{C}^n \) such that:

(i) for a (countable) dense set of points \(x' \in \Omega' - A' \), \(l \) separates the points of \(\pi^{-1}(x') \);
(ii) for the given point \(a \), \(l(a) \) is different from \(l(c) \) for any \(c \neq a \), \(c \in \pi^{-1}(a) \).

Suppose that \(\pi : S - A \rightarrow \Omega' - A' \) is a covering of \(k \) sheets (note that, by the Corollary to Theorem 3 and Proposition 8
\(\pi : S \to \Omega'\) is an open map. Let \(\alpha_1, \ldots, \alpha_k\) be the holomorphic functions on \(\Omega' - A'\) which are the elementary symmetric functions of the values of \(l\) on the fibres of \(\pi\). They have holomorphic extensions to \(\Omega'\). We set then

\[
P(\xi, x') = \xi^k + \sum_{v=1}^{k} \alpha_v(x') \xi^{k-v}.
\]

Clearly, \(P(l(x), l(x)) = 0\) on \(S - A\), hence, this latter set being dense in \(S_j = 0\) on \(S\). This is (a).

Since by assumption \(x_1 - a_1, \ldots, x_p - a_p\) form local coordinates at \(a\) on \(S\), \(\pi\) is a homeomorphism in a neighbourhood of \(a\); hence, by our assumption (ii), \(l(a)\) is a simple root of \(P(\xi, a')\), and hence

\[
\frac{\partial P}{\partial \xi}(l(a), l(a)) \neq 0.
\]

To complete the proof of Theorem 5, it suffices now to prove (c); to obtain the second part of (b), we have only to apply (c) to a neighbourhood of a given point of \(S\).

We have only to find holomorphic functions \(\beta_v\) on \(\Omega'\) such that (e) holds and (d) holds on \(S - A\). Let \(x' \in \Omega' - A'\), and let \(x^{(1)}, \ldots, x^{(k)}\) be the points of \(S - A\) with \(\pi(x^{(j)}) = x'\). Consider the sum

\[
\sum_{j=1}^{k} \frac{P(\xi; x^{(j)}) - P(l(x^{(j)}); x')}{\xi - l(x^{(j)})} h(x^{(j)})
\]

this is clearly of the form

\[
\sum_{v=0}^{k-1} \beta_v(x') \xi^v
\]

where the \(\beta_v\) are holomorphic on \(\Omega' - A'\), and for any \(x'\), \(\beta_v(x')\) is a linear combination of the \(h(x^{(j)})\) with coefficients depending only on the \(l(x^{(j)})\). Hence

\[
|\beta_v(x')| < M \max_{j} |h(x^{(j)})|.
\]
In particular, the \(\beta_v \) are bounded on \(\Omega' - A' \) (since \(h \) is bounded on \(S' \)) and so admits a holomorphic extension
to \(\Omega' \) such that (e) holds. If in the identity
\[
\sum_{j=1}^{k} \frac{P(t;x')}{\xi - 1(x^{(j)})} h(x^{(j)}) = \sum_{v=0}^{k-1} \beta_v (x') \xi^v
\]
we substitute \(\xi = l(x) \) where \(x \) is a point such that \(\pi(x) = x' \in \Omega' - A' \) and \(l \) separates the points of \(\pi^{-1}(x') \)
[such points are dense in \(S - A \)], we obtain (d) on a
dense subset of \(S - A \); hence (d) holds on \(S' \).

Remark. The set of points where \(S \) is not regular is
clearly contained in the set \(P'(x) = \frac{\partial P}{\partial \xi} (l(x),\pi(x)) = 0. \)

Corollary. If \(S \) is an analytic set such that \(S_0 \) is
irreducible there exists \(f \in \mathcal{O}_{n_0} - I(S_0) \) which is a
universal denominator at any point sufficiently near 0.

Of course, this corollary can be proved directly in a
somewhat simpler fashion. In fact, the last part of our
arguments shows that with the notation of Proposition 3,
\(\frac{\partial P}{\partial x^{p+1}} \)
is such a universal denominator.

We shall see later that the finiteness of the fibres
of \(\pi | S \) is a consequence of the hypothesis that \(\pi | S \) is
proper.

Remark. Theorem 4 remains valid if we replace the assumption
that \(\pi : X \rightarrow \Omega' - A' \) is an unramified covering by the
assumption that \(\pi : X \rightarrow \Omega' - A' \) is a proper map with finite
fibres and that \(X \) has dimension \(p \) at each point. In fact,
we have seen in the proof of Theorem 5 that there is a thin
subset \(B' \subset \Omega' - A' \) such that \(X - \pi^{-1}(B') \) is dense in \(X \)
and \(\pi : X - \pi^{-1}(B') \rightarrow \Omega' - A' - B' \) is an unramified
covering. Then, the construction of the functions \(P_f(x) \) can
be done, first for \(x' \epsilon \Omega' - A' - B' \), and, by successive
applications of the continuation theorem, extended first to
\[x' \in \Omega' - A', \text{ then to } x' \in \Omega'. \] The rest of the proof remains the same.

Proposition 10. (Maximum Principle) Let \(S \) be an analytic set in \(\Omega \) and \(f \) a holomorphic function on \(\Omega \). Let \(S_a \) be irreducible, and suppose that \(f \) is not constant on \(S \) in any neighbourhood of \(a \). Then \(f(S) \) is a neighbourhood of \(f(a) \) in \(\mathbb{C} \).

Proof. We may suppose that \(a = 0 \), \(f(a) = 0 \). Let \(U \) be a neighbourhood of \(0 \), and let the coordinates in \(\mathbb{C}^n \) be so chosen that \(U = U' \times U'' \), \(U' \subset \mathbb{C}^p \), \(p = \dim S_0 \) and \(\pi : S \cap U' \to U' \) is proper, has finite fibres (and satisfies Proposition 3). For \(x' \in U' \), \(\delta(x') \neq 0 \), let \(a_1, \ldots, a_k \) be the elementary symmetric functions of the values of \(f \) on \(\pi^{-1}(x') \cap S \); then the \(a_v \) admit holomorphic extensions to \(U' \). Let

\[
P(\xi; x') = \xi^k + \sum_{v=1}^{k} a_v(x')\xi^{k-v}.
\]

Then, for \(x' \in U' \), \(\delta(x') \neq 0 \), we have

\[
f(\pi^{-1}(x')) = \{ \xi \in \mathbb{C} | P(\xi, x') = 0 \}. \]

Hence, by the continuity of the roots of a polynomial, we have

\[
f(\pi^{-1}(x')) = \{ \xi \in \mathbb{C} | P(\xi, x') = 0 \} \text{ for any } x' \in U'.
\]

By assumption, we have \(f \in I(S_0) \). Hence, by Lemma 5, \(a_k(x') \neq 0 \) near \(0 \in U' \). Further, \(a_v(0) = 0 \) for each \(v \) (since \(f(0) = 0 \)). We may suppose, after a linear change of variable in \(\mathbb{C}^p \), that \(a_k(0, \ldots, 0, x_{p-1}) \neq 0 \) near \(x = 0 \). By the preparation theorem, there exists a distinguished polynomial

\[
Q(x_p, x_1', \ldots, x_{p-1}') = x_p^m + \sum_{v=1}^{m} b_v(x_1', \ldots, x_{p-1}')x_p^{m-v}
\]

such that \(P \) and \(Q \) have the same zeros near 0. But clearly,
since $b_\mu(0) = 0$, for any ξ near 0, there is x_p near 0 with $Q(x_p, 0, \ldots, 0, \xi) = 0$; hence the set $\xi \in \mathcal{C}$ near 0 for which there exists x' near 0 with $P(\xi, x') = 0$ is a neighbourhood of 0. Since $f(P^{-1}(x')) = \{\xi \in \mathcal{C} \mid P(\xi, x') = 0\}$, $f(S)$ is a neighbourhood of 0.

Corollary 1. A compact analytic set S in \mathbb{C}^n consists of a finite number of points.

Proof. It suffices to prove that for any holomorphic function f on \mathbb{C}^n, $f(S)$ is finite. If it were infinite, there would exist $\alpha \in f(S) - (f(S))^O$ and $\alpha_\nu \in f(S)$, $\alpha_\nu \neq \alpha_\mu$ if $\nu \neq \mu$, such that $\alpha_\nu \rightarrow \alpha$. Let $s_\nu \in S$, $f(s_\nu) = \alpha_\nu$; by passing to a subsequence if necessary, we may suppose that $s_\nu \rightarrow s_0 \in S$, since S is compact. If $S_{S_0} = \cup S_k, S_0$, then there are infinitely many s_ν on at least one S_k, S_0.

Hence f is not constant on this component, so that $f(S)$ is a neighbourhood of $f(s_0) = \alpha$, and then $
abla f(S) - (f(S))^O$, a contradiction.

Corollary 2. Let φ be a proper holomorphic map of an analytic set S in an open set in \mathbb{C}^n into an open set in \mathbb{C}^m. Then, for $y \in \mathbb{C}^m$, $\varphi^{-1}(y)$ is a finite set (being a compact analytic subset of \mathbb{C}^n).

Corollary 3. Let Ω be an open set in \mathbb{C}^n, $\pi : \Omega \rightarrow \mathbb{C}^p$ the projection. Let $\Omega' = \pi(\Omega)$ and A' be a thin subset of Ω'. If X is an analytic set in $\Omega - \pi^{-1}(A')$ of dimension p at any point and $\pi|X$ is proper, then X is an analytic set in Ω of dimension p at each point.

This follows from Corollary 2 and the remark preceding Proposition 10.

Proposition 11. Let S be an analytic set in Ω such that S_a is irreducible. Then a has a fundamental system of neighbourhoods U such that the set of regular points of S in U is connected.
Proof. Choose U such that Proposition 4 is valid and further, with the notation as before, the set $S \cap \{x \in U' \mid \delta(x') \neq 0\}$ is dense in $S \cap U$. It suffices to prove that $X = S \cap \{x \in U' \mid \delta(x') \neq 0\}$ is connected. Now $\pi : X \to U' - \{x' \in U' \mid \delta(x') = 0\}$ is a finite covering. Hence if X is not connected, and Y is a connected component of X, $\pi|Y$ is also a covering. Let h be the function $= 0$ on Y, $= 1$ on $X - Y$. If S' is the set of regular points of S, $S' - X$ is thin, and hence h has a holomorphic extension to S'. By the corollary to Theorem 5, there is $f \mid I(S_o)$ such that $F = fh$ is holomorphic on S_o. Now, for any $x' \in U'$, $\delta(x') \neq 0$, clearly there is $x \in S$ (viz $x \in Y$) with $F(x) = 0$. By Lemma 5, $F \mid I(S_o)$, so that F vanishes at all points near 0. But clearly there are points arbitrarily close to 0 on $X - Y$ where $f \neq 0$, which implies that $F \mid I(S_o)$. This proves Proposition 11.

Corollary. If S, a are as above, and $\dim S_a = p$, then there is a neighbourhood V of such that S has dimension p at any point of $V \cap S$.

This follows at once from Proposition 11 and Proposition 5.

Theorem 6. Let S be an analytic set in an open set Ω in \mathbb{C}^n and let $0 \in S$. Suppose that S_o is irreducible. Then there exists a neighbourhood V of 0 and finitely many holomorphic functions f_1, \ldots, f_m in V such that:

(a) the set of singular points of $S \cap V$ is precisely the set $\{x \in V \mid f_1(x) = \ldots = f_m(x) = 0\}$;

(b) each f_i is a universal denominator at every point of V.

Proof. Choose the coordinates (x_1, \ldots, x_n) in \mathbb{C}^n and $U' = \{x' \in \mathbb{C}^P \mid |x'| < \epsilon'\}$, $U'' = \{x'' \in \mathbb{C}^{n-P} \mid |x''| < \epsilon''\}$ such that if $U = U' \times U''$, then the projection $\pi : U \cap S \to U'$ is proper with finite fibres.
Let $\varepsilon > 0$ be sufficiently small, and set, for $|\alpha_{ij}| < \varepsilon,$ $i = 1, \ldots, p,$ $j = 1, \ldots, n,$

$$\xi_1^{(a)} = x_1 + \sum_{j=1}^{n} \alpha_{ij} x_j.$$

Then, if ε is small, $(\xi_1^{(a)}, \ldots, \xi_p^{(a)}, x_{p+1}, \ldots, x_n)$ are linearly independent. Let $q_1 < q'$ be fixed, and ε small enough. Let $U'_1 = \{x' \in U' | |x'| < q_1\}$ and $U'_1 = U'_1 \times U''$.

Let $U_\alpha = \{x \in U | |\xi_1^{(a)}(x)| < q_1\}$, and let $\pi_\alpha : S \cap U_\alpha \to U'_1$ be the map $\pi_\alpha(x) = (\xi_1^{(a)}(x), \ldots, \xi_p^{(a)}(x))$. If ε is small enough, then π_α is proper. To prove this, we remark that if K' is a compact subset of U'_1, $\pi_\alpha^{-1}(K')$ is closed in U, since clearly it cannot be adherent to any point of ∂U_α in U and is closed in U_α. Further, if $\pi_\alpha(x) \in K'$, then $\pi(x)$ lies in a compact neighbourhood of U'_1 in U if ε is small enough; hence $\pi_\alpha^{-1}(K')$ is contained in a compact subset of U, and being closed in U, is itself compact.

Because of Corollary 1 to Proposition 11, $\pi_\alpha^{-1}(x')$ is finite for any $x' \in U'_1$.

Now, for any regular point a of S in U, there exist $\alpha_{ij}, |\alpha_{ij}| < \varepsilon,$ such that $\xi_1^{(a)}, \ldots, \xi_p^{(a)}$ form a system of coordinates at a. Let W be a neighbourhood of 0 such that $W \cap \bigcap_{|a_{ij}| < \varepsilon} U_\alpha$ (such a W exists if ε is small). If $a \in W \cap S$ and S is regular at a, let α be so chosen that the $\xi^{(a)}$ form coordinates at a. There exists, by Theorem 5, a function P_α' which is a universal denominator at any point of U_α, $P_\alpha'(a) \neq 0$, which vanishes on the singular set of S in U_α. Hence, there exists a family of holomorphic functions $\{f_t\}$ in W which are universal denominators at any point of W such that the singular set of S in W is given by $\{x \in V | f_t(x) = 0 \forall t\}$. Theorem 6 follows easily from this and Chapter II, Theorem 5 (if we replace W by a smaller open set V).
Corollary 1. Let S be an analytic set in an open set Ω in \mathbb{C}^n. Then the set of singular points of S is an analytic set in Ω.

Proof. Let $a \in S$ and $S_a = \cup S_{v,a}$, where the $S_{v,a}$ are the irreducible components of S_a. Let S_v be an analytic set in a neighbourhood W of a inducing $S_{v,a}$. Since the $S_{v,a}$ are irreducible and none of them is contained in the union of the others, we have
$$\dim (S_{v,a} \cap S_{\mu,a}) < \min (\dim S_{v,a}, \dim S_{\mu,a})$$ if $\mu \neq v$. Hence, by the Corollary to Proposition II, we may choose W so small that for $b \in S_v \cap S_{\mu} \cap W$ we have
$$\dim (S_{v,b} \cap S_{\mu,b}) < \min (\dim S_{v,b}, \dim S_{\mu,b})$$ for $\mu \neq v$.

In particular, no germ $S_{v,b}$ is contained in the union of the others. We claim that the set of singular points of S which lie on S_v is the union T_v of the set of singular points of S with $\bigcup_{\mu \neq v} (S_v \cap S_{\mu})$. In fact, it is clear that S is regular at any point of S_v not on T_v. If $b \in S_v \cap S_{\mu}$, $\mu \neq v$, then since an analytic set is clearly irreducible at regular point, b is singular. If $b \notin \bigcup_{\mu \neq v} (S_v \cap S_{\mu})$, then $S_b = S_{v,b}$ so that b is singular on S if and only if it is singular on S_v. The corollary clearly follows from this and Theorem 6.

If S_0 is not irreducible and if $S_0 = \bigcup S_{v,0}$ is the decomposition of S_0 into irreducible components, let S, S_v be representatives of these germs in a neighbourhood of 0. If f is a universal denominator for $S_{v,b}$ for any $b \in S_v \cap U$, and if g is holomorphic on U, $g = 0$ on S_{μ}, $\mu \neq v$, $g \neq 0$ on a dense subset of S_v, then $h = gf$ is a universal denominator at any point of $S \cap U$ for S. It follows from this that we have

Corollary 2. Theorem 6 remains valid if we drop the hypothesis that S_0 is irreducible.
Corollary 3. If S is an analytic set in an open set Ω in \mathbb{C}^n, and A is the set of singular points of S, and if $a \in S$, then for any $f \in \mathcal{O}_a$, which vanishes on A_a, there is an integer $k > 1$ such that f^k is a universal for S at all points near a.

This follows at once from Corollary 2 above and the Hilbert Nullstellensatz.

Proposition 12. Let Ω be an open set in \mathbb{C}^n and $A \subset \Omega$ an analytic subset of dimension $< n - 2$. Then, for any holomorphic function on $\Omega - A$, there is a unique holomorphic function F on Ω with $F|_{\Omega - A} = f$.

Proof. The uniqueness of F, if it exists, is obvious. Hence we have only to prove that for every $a \in A$, there is a neighbourhood V and an F holomorphic in V with $F|_{V - A} = f|_{V - A}$. We may suppose that $a = 0$, and, after a linear change of coordinates in \mathbb{C}^n, that 0 is an isolated point of the set

$$A \cap \{x_1 = \ldots = x_{n-2} = 0\}.$$

If $\varrho > 0$ is sufficiently small, and

$$a_v = (0, \ldots, 0, \frac{1}{v}, 0),$$

it is clear that, if v is large, the set

$$\bar{D}_v = \{x \in \mathbb{C}^n | x_1 = \ldots = x_{n-2} = 0, x_{n-1} = \frac{1}{v}, |x_n| < \varrho\} \subset \Omega - A,$$

and

$$K_0 = \{x \in \mathbb{C}^n | x_1 = \ldots = x_{n-2} = 0, x_{n-1} = 0, |x_n| = \varrho\} \subset \Omega - A.$$

Hence, by Chapter I, Proposition 12, There is a connected neighbourhood V of 0 (containing K_0) and F holomorphic in V such that $F = f$ near K_0. Since $V - A$ is connected, it follows from the principle of analytic continuation that $F = f$ in $V - A$.
Proposition 13. Let S be an analytic in an open set Ω in \mathbb{C}^n, and let f be holomorphic in Ω. Suppose that, for $a \in S$, $f \neq 0$ on any irreducible component of the germ S_a induced by S at a. Then, if $S' = \{x \in S | f(x) = 0\}$, we have

$$\dim S_a' = \dim S_a - 1.$$

Proof. 1. We first suppose that $S = \Omega$ and $a = 0$. Then, by the preparation theorem, we may suppose that

$$f(x) = x^p_n + \sum_{\nu=1}^{p} a_\nu(x')x^{p-\nu}_n, \quad x' = (x_1, \ldots, x_{n-1}), \quad a_\nu(0) = 0.$$

Clearly, if $U = U' \times U''$, $U' \subset U \subset \mathbb{C}$, is a neighbourhood of 0 such that $x' \in U'$, $f(x', x_n) = 0$ imply that $x_n \in U''$, then the projection $\pi : S' = \{x \in U | f(x) = 0\} \rightarrow U'$ is surjective; hence if $g = g(x_1, \ldots, x_{n-1}) \in I(S'_0)$, then $g \equiv 0$, (since g clearly vanishes on $\pi(S')$), so that, by definition of dimension, $\dim S'_0 = n - 1$.

2. For the general case, we may suppose that $a = 0$ and that S_0 is irreducible. If $p = \dim S_0$, we can find a neighbourhood $U = U' \times U''$ of 0, $U' \subset \mathbb{C}^p$, $U'' \subset \mathbb{C}^{n-p}$ such that $\pi : S \cap U \rightarrow U'$ is surjective, proper, and has finite fibres. Further, if δ is as in Lemma 2, $W = \{x \in S \cap U | \delta(x') \neq 0\}$ is dense in $S \cap U$. Now $\pi : W \rightarrow U' - \{x' \in U' | \delta(x') = 0\}$ is a finite covering, of say, q sheets. Let, for $x' \in U'$, $\delta(x') \neq 0$, $h(x')$ be the product of the values of f at the points of S lying over x'. Then h is bounded (if U is small enough) and so admits a holomorphic extension, also denoted by h, to U'. Clearly $\{x' \in U', \delta(x') \neq 0, h(x') = 0\}$ is the projection of $W \cap S'$ onto U'. Further, if $x \in S$, $\delta(x') = 0$, we can find a sequence of points $x_v \in S$, $\delta(x_v') \neq 0$, $x_v \rightarrow x$. If $f(x) = 0$, then $f(x_v) \rightarrow 0$, hence $h(x_v') \rightarrow 0$ so that $h(x') = 0$. Hence
\(x(S') \setminus \{ x' \in U' \mid h(x') = 0 \} \), and one proves, in the same way, the converse inclusion, so that \(x(S') = \{ x' \in U' \mid h(x') = 0 \} \). Since \(f \neq 0 \) on \(S_0 \), \(h \neq 0 \). By the argument given in 1, above, we can suppose, after a linear change of coordinates in \(\mathbb{C}^p \) (and shrinking of \(U' \)) that the following holds: let \(\pi_{p-1} \) be the restriction to \(U' \) of the projection of \(\mathbb{C}^p \) onto \(\mathbb{C}^{p-1} \). Then \(T = \pi_{p-1}(x(S')) = \pi_{p-1}(U') \).

It follows since any function \(g(x_1, \ldots, x_{p-1}) \in I(S'_0) \) must vanish on \(T \), that \(I(S'_0) \cap \mathbb{C}^{p-1} = \{0\} \), so that \(\dim S'_0 = p - 1 = \dim S_0 - 1 \).

Theorem 5 has another important application.

Theorem 7. Let \(S \) be an analytic set in an open set in \(\mathbb{C}^n \). The space of holomorphic functions on \(S \) is complete; i.e. if \(\{f_p\} \) is a sequence of holomorphic functions on \(S \) and \(f_p \to f \), uniformly on compact subsets of \(S \), then \(f \) is holomorphic on \(S \).

Proof. Let \(a \in S \) and \(S_v \) be analytic sets in an open neighbourhood \(\Omega \) of \(a \) such that \(S_a = \bigcup_{v=1}^k S_{v,a} \) is the decomposition of \(S_a \) into irreducible components. By Theorem 5, applied to \(S_{v,a} \) after a linear change of coordinates in \(\mathbb{C}^n \), there is a neighbourhood \(V_v \) of \(a \) in \(\Omega \) and a holomorphic function \(u_v \) in \(V_v \) such that if \(\varphi \) is holomorphic on \(V_v \cap S \), there is a holomorphic function \(\psi_v \) in \(V_v \) such that, with \(M' > 0 \) independent of \(\varphi \), we have \(\{ x \in V_v \cap S_v \mid u_v(x) \neq 0 \} \) is dense in \(V_v \cap S_v \),

\[u_v \varphi = \psi_v \] in \(V_v \cap S_v \),

and

\[\| \psi_v \|_{V_v} < M' \| \varphi \|_{V_v \cap S_v} \]

If \(g_v \) is a holomorphic function in \(V_v \) vanishing on \(\bigcup_{\mu \neq v} S_{\mu} \),
while \(\{x \in S | g_v(x) \neq 0\} \) is dense in \(S_v \cap V \) (such a \(g_v \) exists, by Proposition 9' if \(V \) is small enough), then, for any \(\varphi \) holomorphic on \(V \cap S \), there is a holomorphic \(\psi_v (= g_v \psi_v') \) on \(V \) with

\[
(a) \quad \psi_v \varphi = \psi_v \text{ on } V \cap S,
\]

\[
(b) \quad \|\psi_v\|_{V_v} < M \|\varphi\|_{V \cap S}.
\]

here \(\psi_v = g_v \psi_v' \) and \(M > 0 \) is independent of \(\varphi \). Further, \(\{x \in S | V_v(x) \neq 0\} \) is dense in \(S_v \cap V \).

Let \(\mathcal{O}_a = \mathcal{O}_{\Omega_a} \) be the ring of germs of holomorphic functions on \(\Omega \) at \(a \), and \(F_a = F_a(S) \), the ideal in \(\mathcal{O}_a \) of functions vanishing on \(S_a \).

Consider the homomorphism

\[
\alpha: \mathcal{O}_a \to \mathcal{O}_a^k
\]

given by \(\alpha(f) = (v_1 f, \ldots, v_k f) \). Let \(E_a = \alpha(\mathcal{O}_a) + \sum_{\alpha} \mathcal{O}_a^k \).

By Cartan's theorem (Chapter II, Corollary 1 to Theorem 5), if a sequence \((h_p) \) of \(k \)-tuples of holomorphic functions in a neighbourhood \(U \) of \(a \) converges uniformly on \(U \) (to \(h \) say) and \((h_p) \in E_a \) for each \(p \), then \((h) \in E_a \).

Let \(\{f_p\} \) be a sequence of holomorphic functions on \(\Omega \), which converges uniformly on \(\Omega \cap S \). Let \(\varphi_0 = f_0 \), \(\varphi_p = f_p - f_{p-1}, \ p > 1 \). We may suppose that

\[
\sum_{p=0}^{\infty} \|\varphi_p\|_{\Omega \cap S} < \infty.
\]

By our remarks above, there are holomorphic functions \(\psi_{p,v} (v = 1, \ldots, k) \) on \(V_v \) such that \(v v_p = \psi_{p,v} \) on \(V_v \cap S \), \(\|\psi_{p,v}\|_{V_v} < M \|\varphi\|_{V \cap S} \). If \(\psi = (\psi_1, \ldots, \psi_k) \), then \((\alpha(\varphi_p))_a - (\psi_p)_a \in F_a \), hence \((\psi_p)_a \in E_a \). Further, \(\sum \psi_p \) converges on \(V = \cap V_v \) since \(\sum \|\psi_p\|_V < M \sum \|\varphi_p\|_{\Omega \cap S} < \infty. \)
Let \(\psi = (\psi^{(1)}, \ldots, \psi^{(k)}) = \sum \psi_p \). Then, by our remark above, \((\psi)_a \in \mathcal{E}_a \), so that there is a neighbourhood \(W \) of \(a \) and a holomorphic function \(\varphi \) on \(W \) such that \(v_\nu \varphi = \psi^{(\nu)} \) on \(W \cap S \).

Let \(f = \lim f_p = \sum \varphi_p \). Then, since \(v_\nu \varphi_p = \psi^{(\nu)}_p \), we have \(v_\nu f = \psi^{(\nu)} \) on \(W \cap S \), so that \(v_\nu (f - \varphi) = 0 \) on \(W \cap S \) for \(\nu = 1, \ldots, k \). But since \(\{x \in V_\nu \cap S \mid v_\nu (x) \neq 0\} \) is dense in \(V_\nu \cap S \), this implies that \(f = \varphi \) on \(W \cap S \) for each \(\nu \), so that \(\varphi = f \) on \(W \cap S \). Since \(\varphi \) is holomorphic on \(W \), this proves the theorem.

Remark. The idea of this proof is essentially that of Bungart-Rossi [7].